Pathogenetic Role of Disorders of Insulin Signaling Pathways and Diabetes-Associated Hyperglycemia in the Mechanisms of Diabetic Encephalopathy Formation and Hypersensitivity of the Brain to Ischemia-Reperfusion

  • Svitlana Tkachuk Буковинський державний медичний університет
  • Oleksiy Tkachuk Bukovinian State Medical University, Chernivtsi, Ukraine
  • Olha Nika Bukovinian State Medical University, Chernivtsi, Ukraine
  • Yuliya Hodovanets Bukovinian State Medical University, Chernivtsi, Ukraine
Keywords: Insulin, Hyperglycemia, Diabetic encephalopathy, Cerebral reperfusion ischemia

Abstract

The aim of the study was to analyze the literature data regarding the pathogenetic role of insulin signaling disorders and diabetes-associated hyperglycemia in the mechanisms of diabetic encephalopathy and hypersensitivity of the brain to ischemia-reperfusion.

Conclusion. Analysis of the literature data shows a number of common links between the pathogenesis of diabetic encephalopathy and ischemic-reperfusion brain injury, which may, to some extent, explain the predisposition of diabetics to acute cerebral circulatory disorders and their adverse course. However, it is clear that the severity of such comorbid pathology cannot be explained only by the additive effect of individual links in the pathogenesis, which indicates the necessity for further in-depth study of its molecular-genetic aspects.

References

IDF Diabetes Atlas. 7th ed. [Internet]. Brussels; 2015 [cited 2017 Jul 9]. 144 р. Available from: http://www.oedg.at/pdf/1606_IDF_Atlas_2015_UK.pdf.

Standards of medical care in diabetes-2016: Summary of revisions. Diabetes Care. 2016 Jan;39(1):4-5. Available from: https://doi.org/10.2337/dc16-S003

Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006 Nov; 3(11):e442. Available from: https://doi.org/10.1371/journal.pmed.0030442

Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocrinol Metab. 2016 Jul-Aug; 20(4): 546-551. Available from: https://doi.org/10.4103/2230-8210.183480

Yamagishi S, Nakamura N, Suematsu M, Kaseda K, Matsui T. Advanced Glycation End Products: A Molecular Target for Vascular Complications in Diabetes. Mol Med. 2015;21(1):32-40. Available from: https://doi.org/10.2119/molmed.2015.00067

Ji R, Schwamm LH, Pervez MA, Singhal AB. Ischemic stroke and transient ischemic attack in young adults: risk factors, diagnostic yield, neuroimaging, and thrombolysis. JAMA Neurol. 2013 Jan;70(1):51-57. Available from: https://doi.org/10.1001/jamaneurol.2013.575

Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke. 2014 Jan;45(1):315-353. Available from: https://doi.org/10.1161/01.str.0000437068.30550.cf

Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res. 2016 Mar;11(3):372-385. Available from: https://doi.org/10.4103/1673-5374.179032

Tanaka R, Ueno Y, Miyamoto N, Yamashiro K, Tanaka Y, Shimura H, et al. Impact of diabetes and prediabetes on the short-term prognosis in patients with acute ischemic stroke. J Neurol Sci. 2013 Sep 15;332(1-2):45-50. Available from: https://doi.org/10.1016/j.jns.2013.06.010

Lindley RI, Wardlaw JM, Whiteley WN, Cohen G, Blackwell L, Murray GD, et al. Alteplase for acute ischemic stroke: outcomes by clinically important subgroups in the Third International Stroke Trial. Stroke. 2015 Mar;46(3):746-56. Available from: https://doi.org/10.1161/STROKEAHA.114.006573

Khalid Al-Rubeaan, Fawaz Al-Hussain, Amira M. Youssef, Shazia N. Subhani, Ahmad H. Al-Sharqawi, Heba M. Ibrahim. Ischemic Stroke and Its Risk Factors in a Registry-Based Large Cross-Sectional Diabetic Cohort in a Country Facing a Diabetes Epidemic [Internet]. Journal of Diabetes Research. 2016 [cited 2017 Jul 9];2016. Available from: https://doi.org/10.1155/2016/4132589

Liao CC, Shih CC, Yeh CC, Chang YC, Hu CJ, Lin JG, et al. Impact of Diabetes on Stroke Risk and Outcomes: Two Nationwide Retrospective Cohort Studies. Medicine (Baltimore). 2015 Dec;94(52):e2282. Available from: https://doi.org/10.1097/MD.0000000000002282

Cardoso S, Santos RX, Correia SC, Carvalho C, Santos MS, Baldeiras I, et al. Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis. 2013 Jan;49:1-12. Available from: https://doi.org/10.1016/j.nbd.2012.08.008

Price TO, Sheibani N, Shah GN. Regulation of high glucose-induced apoptosis of brain pericytes by mitochondrial CA VA: A specific target for prevention of diabetic cerebrovascular pathology. Biochim Biophys Acta. 2017;1863(4):929-935. Available from: https://doi.org/10.1016/j.bbadis.2017.01.025

Lee SH, Zabolotny JM, Huang H, Lee H, Kim YB. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood. Mol Metabol. 2016 Aug;5(8):589-601. Available from: https://doi.org/10.1016/j.molmet.2016.06.011

Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015 May 20;86(4):883-901. Available from: https://doi.org/10.1016/j.neuron.2015.03.035

Soltesova D, Vesela A, Mravec B, Herichova I. Daily profile of glut1 and glut4 expression in tissues inside and outside the blood-Brain barrier in control and streptozotocin-treated rats. Physiol Res. 2013;62(1):115-124. Available from: https://doi.org/10.33549/physiolres.932596

Shah K, Desilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer's Disease. Int J Mol Sci. 2012 Oct;13(10):12629-12655. Available from: https://doi.org/10.3390/ijms131012629

Andersen JV, Christensen SK, Nissen JD, Waagepetersen HS. Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab. 2017 Mar;37(3):1137-1147. Available from: https://doi.org/10.1177/0271678X16684154

Newsholme P, Gaudel C, Krause M. Mitochondria and diabetes. An intriguing pathogenetic role. Adv Exp Med Biol. 2012; 942:235-247. Available from:

https://doi.org/10.1007/978-94-007-2869-1_10

Rehni AK, Nautiyal N, Perez-Pinzon MA, Dave KR. Hyperglycemia / hypoglycemia-induced mitochondrial dysfunction and cerebral ischemic damage in diabetics. Metab Brain Dis. 2015 Apr;30(2):437-447. Available from: https://doi.org/10.1007/s11011-014-9538-z

Cardoso S, Santos MS, Seiça R, Moreira PI. Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta. 2010 Nov;1802(11):942-951. Available from: https://doi.org/10.1016/j.bbadis.2010.07.001

Park J, Min JS, Kim B, Chae UB, Yun JW, Choi MS, et al. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett. 2015 Jan 1;584:191-196. Available from: https://doi.org/10.1016/j.neulet.2014.10.016

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010 Oct;107(9):1058-1070. Available from: https://doi.org/10.1161/CIRCRESAHA.110.223545

Moreira PI, Rolo AP, Sena C, Seiça R, Oliveira CR, Santos MS. Insulin attenuates diabetes-related mitochondrial alterations: a comparative study. Med Chem. 2006;2(3):299-308. Available from: https://doi.org/10.2174/157340606776930754

Crofts AR, Hong S, Wilson C, Burton R, Victoria D, Harrison C, et al. The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1362-377. Available from: https://doi.org/10.1016/j.bbabio.2013.01.009

Perez-Gallardo RV, Noriega-Cisneros R, Esquivel-Gutierrez E, Calderon-Cortes E, Cortes-Rojo C, Manzo-Avalos S, et al. Effects of diabetes on oxidative and nitrosative stress in kidney mitochondria from aged rats. J Bioenerg Biomembr. 2014 Dec;46(6):511-518. Available from: https://doi.org/10.1007/s10863-014-9594-4

Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD+ redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes. 2016 May 10;9:145-153. Available from: https://doi.org/10.2147/DMSO.S106087

Prakash R, Somanath PR, El-Remessy AB, Kelly-Cobbs A, Stern JE, Dore-Duffy P, et al. Enhanced cerebral but not peripheral angiogenesis in the Goto-Kakizaki model of type 2 diabetes involves VEGF and peroxynitrite signaling. Diabetes. 2012 Jun;61:1533-1542. Available from: https://doi.org/10.2337/db11-1528

Ceretta LB, Réus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res. 2012;2012:302682. Available from: https://doi.org/10.1155/2012/302682

Zheng H, Wu J, Jin Z, Yan LJ. Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications. Biochem Insights. 2016 Mar:9:1-9. Available from: https://doi.org/10.4137/BCI.S36141

Chilelli NC, Burlina S, Lapolla A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view. Nutr Metab Cardiovasc Dis. 2013 Oct;23(10):913-919. Available from: https://doi.org/10.1016/j.numecd.2013.04.004

Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging Dis. 2016 Jan;7(1):90-110. Available from: https://doi.org/10.14336/AD.2015.0702

Vahabzadeh G, Ebrahimi SA, Rahbar-Roshandel N, Mahmoudian M. The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition. Iran J Pharm Res. 2016;15(2):501-512.

Stanika RI, Villanueva I, Kazanina G, Andrews SB, Pivovarova NB. Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury. J Neurosci. 2012 May 9;32(19):6642-6650. Available from: https://doi.org/10.1523/JNEUROSCI.6008-11.2012

Chen J, Li Z, Hatcher JT, Chen QH, Chen L, Wurster RD, et al. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca2+ Entry and Ca2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation. Front Neurosci. 2017 Mar 28;11:138. Available from: https://doi.org/10.3389/fnins.2017.00138

Hou J, Chong ZZ, Shang YC, Maiese K. FoxO3a governs early and late apoptotic endothelial programs during elevated glucose through mitochondrial and caspase signaling. Mol Cell Endocrinol. 2010 Jun;321(2):194-206. Available from: https://doi.org/10.1016/j.mce.2010.02.037

Rizzuto R, De Stefani D, Raffaello A, Mammucari C. Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 2012 Sept;13(9):566-578. Available from: https://doi.org/10.1038/nrm3412

MacAskill AF, Atkin TA, Kittler JT. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci. 2010 Jul;32(2):231-240. Available from: https://doi.org/10.1111/j.1460-9568.2010.07345.x

Pekun TG, Lemeshchenko VV, Lyskova TI, Waseem TV, Fedorovich SV. Influence of intra- and extracellular acidification on free radical formation and mitochondria membrane potential in rat brain synaptosomes. J Mol Neurosci. 2013 Jan;49(1):211-222. Available from: https://doi.org/10.1007/s12031-012-9913-3

Chassagnon IR, McCarthy CA, Chin YK, Pineda SS, Keramidas A, Mobli M, et al. Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a. Proc Natl Acad Sci U S A. 2017 Apr;114(14):3750-3755. Available from: https://doi.org/10.1073/pnas.1614728114

Wang YZ, Zeng WZ, Xiao X, Huang Y, Song XL, Yu Z, et al. Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death. Cell Death Differ. 2013 Oct;20(10):1359-1369. Available from: https://doi.org/10.1038/cdd.2013.90

Gao S, Yu Y, Ma ZY, Sun H, Zhang YL, Wang XT, et al. NMDAR-Mediated Hippocampal Neuronal Death is Exacerbated by Activities of ASIC1a. Neurotox Res. 2015 Aug;28(2):122-137. Available from: https://doi.org/10.1007/s12640-015-9530-3

Rose KL, Watson AJ, Drysdale TA, Cepinskas G, Chan M, Rupar CA, et al. Simulated diabetic ketoacidosis therapy in vitro elicits brain cell swelling via sodium-hydrogen exchange and anion transport. Am J Physiol Endocrinol Metab. 2015 Aug;309(4):370-379. Available from: https://doi.org/10.1152/ajpendo.00107.2015

Zeng WZ, Liu DS, Duan B, Song XL, Wang X, Wei D, et al. Molecular mechanism of constitutive endocytosis of Acid-sensing ion channel 1a and its protective function in acidosis-induced neuronal death. J Neurosci. 2013 Apr;33(16):7066-7078. Available from: https://doi.org/10.1523/JNEUROSCI.5206-12.2013

Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 2014 Jan;20(2):353-371. Available from: https://doi.org/10.1089/ars.2012.4774

Rasola A, Bernardi P. Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium. 2011 Sep;50(3):222-233. Available from: https://doi.org/10.1016/j.ceca.2011.04.007

Lee GH, Lee HY, Li B, Kim HR, Chae HJ. Bax inhibitor-1-mediated inhibition of mitochondrial Ca2+ intake regulates mitochondrial permeability transition pore opening and cell death. Sci Rep. 2014 Jun;4:5194. Available from: https://doi.org/10.1038/srep05194

Chen Q, Xu H, Xu A, Ross T, Bowler E, Hu Y, et al. Inhibition of Bcl-2 sensitizes mitochondrial permeability transition pore (MPTP) opening in ischemia-damaged mitochondria. PLoS One. 2015 Mar;10(3):0118834. https://doi.org/10.1371/journal.pone.0118834

Weinberg E, Maymon T, Weinreb M. AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFalpha production and oxidative stress. J Mol Endocrinol. 2014 Jan;52(1):67-76. Available from: https://doi.org/10.1530/JME-13-0229

Hu S, Wang D, Zhang J, Du M, Cheng Y, Liu Y, et al. Mitochondria Related Pathway Is Essential for Polysaccharides Purified from Sparassis crispa Mediated Neuro-Protection against Glutamate-Induced Toxicity in Differentiated PC12 Cells. Int J Mol Sci. 2016 Jan;17(2):133. Available from: https://doi.org/10.3390/ijms17020133

Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017 Jan 23;14(1):21. Available from: https://doi.org/10.1186/s12974-016-0774-5

Zhou XY, Luo Y, Zhu YM, Liu ZH, Kent TA, Rong JG, et al. Inhibition of autophagy blocks cathepsins-tBid-mitochondrial apoptotic signaling pathway via stabilization of lysosomal membrane in ischemic astrocytes. Cell Death Dis. 2017 Feb;8(2):2618. Available from: https://doi.org/10.1038/cddis.2017.34

Chen J, Jing J, Yu S, Song M, Tan H, Cui B, et al. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis. Am J Transl Res. 2016 May;8(5):2169-2178.

Tai TY, Warner LN, Jones TD, Jung S, Concepcion FA, Skyrud DW, et al. Antiepileptic action of c-Jun N-terminal kinase (JNK) inhibition in an animal model of temporal lobe epilepsy. Neuroscience. 2017 May 4;349:35-47. Available from: https://doi.org/10.1016/j.neuroscience.2017.02.024

Li L, Xiao L, Hou Y, He Q, Zhu J, Li Y, et al. Sestrin2 Silencing Exacerbates Cerebral Ischemia/Reperfusion Injury by Decreasing Mitochondrial Biogenesis through the AMPK/PGC-1α Pathway in Rats. Sci Rep. 2016 Jul;6:30272. Available from: https://doi.org/10.1038/srep30272

Rehni AK, Liu A, Perez-Pinzon MA, Dave KR. Diabetic aggravation of stroke and animal models. Exp Neurol. 2017 Jun;292:63-79. Available from: https://doi.org/10.1016/j.expneurol.2017.03.004

Hei C, Liu P, Yang X, Niu J, Li PA. Inhibition of mTOR signaling Confers Protection against Cerebral Ischemic Injury in Acute Hyperglycemic Rats. Int J Biol Sci. 2017 Jul;13(7):878-887. Available from: https://doi.org/10.7150/ijbs.18976

Correia SC, Santos RX, Carvalho C, Cardoso S, Candeias E, Santos MS, et al. Insulin signaling, glucose metabolism and mitochondria: major players in Alzheimer's disease and diabetes interrelation. Brain Res. 2012 Mar 2;1441:64-78. Available from: https://doi.org/10.1016/j.brainres.2011.12.063

Hong S, Agresta L, Guo C, Wiley JW. The TRPV1 receptor is associated with preferential stress in large dorsal root ganglion neurons in early diabetic sensory neuropathy. J Neurochem. 2008 May;105(4):1212-1222. Available from: https://doi.org/10.1111/j.1471-4159.2008.05220.x

Brooks C, Cho SG, Wang CY, Yang T, Dong Z. Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am J Physiol Cell Physiol. 2011 Mar;300(3):447-455. Available from: https://doi.org/10.1152/ajpcell.00402.2010

Published
2022-10-17
Section
Review