Possible Mechanism of Aframomum Sceptrum Extracts Mediated Modulation of Renal Function after Monosodium Glutamate Exposure


Aframomum sceptrum
oxidative stress
monosodium glutamate
mechanism of kidney function

How to Cite

Ichipi-Ifukor, P. C., Ogbeke, G. I., & George, B. O. (2019). Possible Mechanism of Aframomum Sceptrum Extracts Mediated Modulation of Renal Function after Monosodium Glutamate Exposure. Galician Medical Journal, 26(4). https://doi.org/10.21802/gmj.2019.4.6


The objective of the research was to explain the possible mechanism of an earlier reported role of Aframomum sceptrum extract in the modulation of renal function parameters in monosodium glutamate-induced toxicity.

         Materials and Methods. Similar experimental methods previously reported by us in Ogbeke et al., (2016) were maintained.

         Results. Monosodium glutamate administration led to a significant elevation of levels of serum and kidney lipid peroxidation due to decrease in the levels of serum and kidney antioxidant enzyme, super oxide dismutase, catalase, gluthathione peroxidase and gluthathione. There was observed increase in oxidative enzyme, aldehyde oxidase, sulphite oxidase, xanthine oxidase and monoamine oxidase activities in serum and kidney after monosodium glutamate consumption. Aframomum sceptrum treatment significantly regulated all altered indices.

         Conclusions. The study concluded that the ability of Aframomum sceptrum extract to modulate renal function parameters in monosodium glutamate-induced toxicity is dependent on its efficacy in the induction and mobilization of antioxidant defense armory via the increased synthesis of tissue and serum enzymatic and non-enzymatic antioxidants, as well as improved oxidative enzyme activities that mediates the quenching of rising aldehydes and sulfoxides, N-oxides and aromatic oxides within the kidney.



Sharma A. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review. Journal of Biomedical Science. 2015;22:93. DOI: https://doi.org/10.1186/s12929-015-0192-5 [PMid:26493866 PMCid:PMC4618747]

Sharma A, Prasongwattana V, Cha'on U et al. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS One. 2013;8(9):e75546. DOI: https://doi.org/10.1371/journal.pone.0075546 [PMid:24086562 PMCid:PMC3784461]

Sharma A, Wongkham C, Prasongwattana V et al. Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate. PLoS One. 2014;9(12):e116233. DOI: https://doi.org/10.1371/journal.pone.0116233 [PMid:25551610 PMCid:PMC4281147]

Hee J, Hyang-Do H, Hyung Y et al. Chronic Administration of Monosodium Glutamate under Chronic variable Stress Impaired Hypothalamic-Pituitary-Adrenal Axis Function in Rats. Korean J Physiol Pharmacol. 2010;14(4):213-221. DOI: https://doi.org/10.4196/kjpp.2010.14.4.213 [PMid:20827335 PMCid:PMC2933437]

Marcincakova HV, Ostatníková, D. Monosodium Glutamate Toxic Effects and Their Implications for Human Intake: A Review. JMED Research. 2013;51-71. DOI: https://doi.org/10.5171/2013.608765

Zehra K, Iffat F, Shaghufta P et al. Monosodium glutamate: Review on clinical reports, International Journal of Food Properties. 2017;20(2):1807-1815. DOI: https://doi.org/10.1080/10942912.2017.1295260

Singh P, Mann K, Mangat H, Kaur G. Prolonged glutamate excitotoxicity: effects on mitochondrial antioxidants and antioxidant enzymes. Mol Cell Biochem. 2003;243(1-2):139-145. DOI: https://doi.org/10.1023/A:1021668314070 [PMid:12619899]

Diniz YS, Fernandes AA, Campos KE et al. Toxicity of hypercaloric diet and monosodium glutamate: oxidative stress and metabolic shifting in hepatic tissue. Food Chem Toxicol. 2004;42(2):313-319. DOI: https://doi.org/10.1016/j.fct.2003.09.006 [PMid:14667476]

Farombi EO, Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol. 2006;25(5):251-259. DOI: https://doi.org/10.1191/0960327106ht621oa [PMid:16758767]

Calis IU, Cosan DT, Saydam F et al. The effects of monosodium glutamate and tannic acid on adult rats. Iran Red Crescent Med J. 2016;18(10):e37912. DOI: https://doi.org/10.5812/ircmj.37912 [PMid:28184327 PMCid:PMC5291937]

Eman AE, Merhan MR, Sabreen MA. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed Pharmacother. 2018;108:799-808. DOI: https://doi.org/10.1016/j.biopha.2018.09.093 [PMid:30253372]

Ndukwu BC, Ben-Nwadibia. Ethnomedicinal aspects of plants used as spices andcondiments in Niger Delta area of Nigeria. Ethnonobotanicals Leaflets. 2005;10:10.

Erukainure OL, Oke OV, Owolabi FO et al. Chemical composition and antioxidant activities of Aframomum sceptrum. Trends in Applied Science Research. 2011;6(2):190-197. DOI: https://doi.org/10.3923/tasr.2011.190.197

Anigboro AA. Antioxidant effect of aqueous seed extract of Aframomum sceptrum (Kschum) on brain and kidney of malaria infested mice. Nigerian Journal of Science and Environment. 2016;14(1):102-106.

Feitosa EA, Haroudo Satiro Xavier HS, Randau KP. Chrysobalanaceae: traditional uses, phytochemistry and pharmacology. Revista Brasileira de Farmacognosia. 2012;(22):5-14. DOI: https://doi.org/10.1590/S0102-695X2012005000080

George BO, Osioma E, Falodun A. Effect of Atiko (Aframomum sceptrum) and African nutmeg (Monodora myristica) on reduced glutathione, uric acid levels and liver marker enzymes in streptozotocin-induced diabetic rats. Egyptian Journal of Biochemistry and Molecular Biology. 2010;28(2). DOI: https://doi.org/10.4314/ejbmb.v28i2.60794

Dokubo A, Uwakwe AA, Amadi BA. Effects of Aframomum Sceptrum and Parinari Congensis Seed Extracts in Alloxan Induced-Diabetic Wistar Albino Rats. International Journal of Agriculture and Earth Science. 2017;3(5):20-33.

Aguda OY, Bankole SO, Adekunle EA et al. Antifungal and Preservative Effect of Different Species of Aframomum (K. Schum) on Fungi Isolated from Raw Meat and Fish. Journal of Advances in Biology & Biotechnology. 2019;22(4):1-7. DOI: https://doi.org/10.9734/jabb/2019/v22i430119

Nwankwo PO. Extraction, fractionation and assessment of antioxidant activities of active components of Aframomum sceptrum seeds. African Journal of Biochemistry Research. 2015;9(10):117-123. DOI: https://doi.org/10.5897/AJBR2015.0846

Atinaya DU, Ichipi-Ifukor PC, George BO et al. Cyanide-induced metabolic stress - the role of Aframomum sceptrum aqueous extract (ASAE). Sokoto Journal of Medical Laboratory Science. 2019;4(3):108-119.

Ogbeke GI, George BO, Ichipi-Ifukor PC. Aframomum Sceptrum Modulation of Renal Function in Monosodium Glutamate (MSG) Induced Toxicity. UK Journal of Pharmaceutical and Bioscience. 2016;4(4)54-60. DOI: https://doi.org/10.1016/j.ijvsm.2018.07.002 [PMid:30564592 PMCid:PMC6286397]

Farombi EO, Onyema O. Monosodium Glutamate-Induced Oxidative Damage and Genotoxicity in the Rat: Modulatory Role of Vitamin C, Vitamin E and Quercetin. Hum Exp Toxicol. 2006;25(5):251-259. DOI: https://doi.org/10.1191/0960327106ht621oa [PMid:16758767]

Gutteridge JMC, Wilkins C. Copper dependent hydroxyl radical damage to ascorbic acid. Formation of a thiobarbiturie acid reactive products. FEBS Letters. 1982;137:327-340. DOI: https://doi.org/10.1016/0014-5793(82)80377-3

Omarov RT, Sagi M, Lips SH. Regulation of aldehyde oxidase and nitrate reductase in roots of barley (Hordeum vulgare L.) by nitrogen source and salinity. J Exper Biol. 1998;49:897-902. DOI: https://doi.org/10.1093/jexbot/49.322.897

Macleod RM, Farkas W, Fridovich I et al. Purification and properties of hepatic sulphite oxidase. J Biol Chem. 1961;236:1841-1846

McEwen CM. Monoamine oxidase (human serum or plasma). Colowick SP, Kaplan NO, editors. Methods in Enzymology. New York: Academic Press; c1971. 692-693. DOI: https://doi.org/10.1016/0076-6879(71)17120-0

Ellman GC. Tissue sulflydryl groups. Arch Biochem Biophys. 1959;82:70-77. DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a sample assay for superoxide dismutase. J Biol Chem. 1972;247:3170-3175

Cohen HJ, Betcher-Lange, Kessler DL et al. Hepatic sulphite oxidase congruency in mitochondria of prosthetic groups and activity. J Biol Chem. 1972;247(2):7759-7766.

Habig WH, Pabst MJ, Jakoby WB. Glutathione -s-transferases: first enzymic step in mercapturic acid formation. J Biol Chem. 1974;249:7130-7139.

Khan MR, Rizvi W, Khan RA, Sheen S. Carbon tetrachloride induced nephrotoxicity in rats: protective role of Digera muricata. J Ethnopharmacol. 2009;122:91-99. DOI: https://doi.org/10.1016/j.jep.2008.12.006 [PMid:19118616]

Asagba SO. Alteration in the activity of oxidative enzymes in the tissues of male Wistar Albino rats exposed to cadmium. Int J Occup Med Environ Health. 2010;23(1):55-62. DOI: https://doi.org/10.2478/v10001-010-0002-y [PMid:20442063]

Achuba FI. Modulation of crude oil induced alteration of oxidative stress indices in rat by red palm oil. J Appl Sci Environ Mgt. 2018;22(6):929-932. DOI: https://doi.org/10.4314/jasem.v22i6.15

Achuba FI. Bitter leaf (Vernonia amygdalina Del) extract potentiates testicular metabolic stress induced by petroleum-tainted diets in rats. Nigerian Journal of Pharmaceutical and Applied Science Research. 2019;8(1):44-51.

Kadiri HE, Asagba SO. The chronic effects of cyanide on oxidative indices in the domestic chicken. Journal of Basic and Applied Zoology. 2019;80(30). DOI: https://doi.org/10.1186/s41936-019-0098-y

Achuba FI. Role of bitter leaf (Vernonia amygdalina) extract in prevention of renal toxicity induced by crude petroleum contaminated diets in rats. Int J Vet Sci Med. 2018; 6(2):172-177. DOI: https://doi.org/10.1016/j.ijvsm.2018.07.002 [PMid:30564592 PMCid:PMC6286397]

Asagba SO. Cadmium in our food and drinking water - should we be worried? 70th in the series of inaugural lectures of the Delta State University, Abraka. 2019;14th February, Delsu Press.

Asagba SO, Eriyamremu GE. Oral cadmium exposure and haematological and liver function parameters of rats fed a Nigerian-like diet. J Nutr Environ Med. 2007;16(3-4):267-274. DOI: https://doi.org/10.1080/13590840701775403

Kweki GR, Ichipi-Ifukor PC, Asagba SO. High Caffeine-Containing Energy Drink-Induced Metabolic Stress in Rats. Sok J Med Lab Sci. 2018;3(3):86-93.

Ezedom T, Asagba SO. Effect of a controlled food-chain mediated exposure to cadmium and arsenic on oxidative enzymes in the tissues of rats. Toxicol Rep. 2016;3:708-715. DOI: https://doi.org/10.1016/j.toxrep.2016.07.002 [PMid:28959596 PMCid:PMC5615934]

Ichipi-Ifukor PC, Asagba SO, Kweki GR et al. Attenuation of Oxidative Enzymes Induction in Palm Oil Fractions Pre-treated Cadmium Intoxicated Rats. Trop J Nat Prod Res. 2019;3(4):107-112. DOI: https://doi.org/10.26538/tjnpr/v3i4.2

Thomas M., Sujatha KS, George S. Protective effect of Piper longum Linn. on monosodium glutamate induced oxidative stress in rats. Indian J Exp Biol. 2009;47(3):186-192.

Tarfa A, Manal AB. Roles of Moringa oleifera Leaf Extract in Improving the Impact of High Dietary Intake of Monosodium Glutamate-Induced Liver Toxicity, Oxidative Stress, Genotoxicity, DNA Damage, and PCNA Alterations in Male Rats. Oxidative Medicine and Cellular Longevity. 2018;4501097. DOI: https://doi.org/10.1155/2018/4501097 [PMid:30647808 PMCid:PMC6311796]

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.