Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible loss of central vision in people over 60 years of age. One of the most important risk factors for AMD is decrease in macular pigment optical density (MPOD). Search for new possible ways of (MPOD) improvement in AMD treatment is very important.
The objective of the research was to study the indices of macular pigment optical density in patients with the dry form of AMD after two courses of low-energy light therapy and conservative treatment.
Material and methods. The main group (MG) included 87 patients (146 eyes) who underwent two courses of low-energy light therapy (LLT) in combination with two courses of conservative treatment in hospital for 10 days at intervals of six months each. The control group (CG) consisted of 75 patients (135 eyes) who underwent only two courses of conservative therapy in the hospital for 10 days at intervals of six months each. Observations were conducted before, after treatment, after 1, 3 and 6 months after each course of treatment. The total period of follow-up was 1 year. LLT was performed using the device Spektra Light (Canada). All patients were generally conducted eye examination. MPOD was measured using densitometer “Maculux praxis” (Germany) by heterochromatic flicker photometry.
Results. MPOD index increased from 0.249 ± 0.011 units to 0.360 ± 0.016 units, by 0.111 ± 0.014 units (44.6%) in 1 month after the first course of treatment, up to 0.344 ± 0.015 units, by 0.095 ± 0.013 units (38.2%) after 3 months, up to 0.321 ± 0.014 units, by 0.072 ± 0.013 (28.9%) in 6 months (p<0.05) in patients of MG. Stabilization of the index from 0.248 ± 0.012 units before the treatment and 0.243 ± 0.011 6 months after the first course of treatment (p>0.05) occurred in patients of the KG. MPOD indices increased from 0.321 ± 0.014 units to 0.431 ± 0.017 units, by 0.110 ± 0.016 units (34.3%) in 1 month after the second course of treatment, up to 0.412 ± 0.017 units, by 0.091 ± 0.016 units (28.4%) in 3 months, and up to 0.388 ± 0.016 units, by 0.067 ± 0.015 (20.9%) in 6 months (p<0.05) in patients of the MG. Stabilization of the index from 0.243 ± 0.011 units before the treatment and 0.237 ± 0.011 in 6 months after the second course of treatment (p>0.05) was observed in patients of KG.
Conclusions. 1. Statistically significant increase in macular pigment optical density from 0.249 ± 0.011 units to 0.388 ± 0.016, by 0.139 ± 0.014 units (by 55.8%) was noted in patients who underwent two courses of low-energy light therapy in combination with a course of conservative treatment. Macular pigment optical density index did not change in the patients in the control group. 2. Two courses of low-energy light therapy in combination with a course of conservative treatment increases the concentration of macular pigment, as evidenced by the increase in indices of macular pigment optical density in comparison with conservative treatment, during which indices stabilize.
References
Wenher LV. Efektyvnist fotostymulyatsiyi monokhromatychnum impulsnym svitlom u vidnovnomu likuvanni khvorykh na ambliopiiu. Odeskyi med zhurnal. 2001; 3: 82-86.
Guzun OV. Efektivnost nizkointensivnogo lazernogo izlucheniya v lechenii bolnykh sukhoi formoi tsentralnoi ateroskleroticheskoi khorioretalnoi distrofii. PhD Thesis. 2002. 163 p.
Kulyakin MI, Paramei VT, Klyutsevaya EI, Savostenko IG. Svetoterapiya vysokoi oslozhnennoi blizorukosti. Oftalmol zhurnal. 1981; 1: 228-231.
Kulyakin MI, Paramei VT, Klyutsevaya EI, Savostenko IG. Fototerapiyachastichnoi atrofii zritelnoho nerva. Oftalmol zhurnal. 1982; 3: 159-162.
Leonova ES, Shchekotov EV, Kolina IV. Znachenie metodiki opredeleniya urovnya plotnosti optecheskogo pigmenta makuly v sokhranenii professionalnogo dolgoletiya rabotnikov zheleznodorozhnogo transporta. Problemy standartizatsiyu v zdravokhraneniyi. 2010; 5-6: 55-60.
Leus NF, Metelitsyna IL, Linnik LA. Deistvie nizkoenergeticheskikh izlucheniy geliy-neohovogo lazera na gidrolitichesnie fermenty lizoom setchatoi obolochi glaza. Oftalmol zh. 1989; 2: 6-11.
Linnik LA, Usov NI, Baronetskaya IL. Stimulyatsia funktsionalnoi aktivnosti tkanei glaza lazernym izlucheniem. In: Tezisy dokladov V siezda oftalmologov SSSR. Tom 3. Moscow; 1979. p. 126-127.
Marchenkova TE, Mironova EM, Golubtsov KV, Arnoldov MV. Ispolzovanie khromaticheskoi impulsnoi foto stimuliatsii dlia lecheniya patologiyi setchatki i zritelnogo nerva. Oftalmol zh. 2006; 3 (ΙΙ): 27-30.
Mironova EM, Magaramov DA, Pavlova ON, Futoryan LM. Vliyanie lazer stimuliatsii na funktsionalnoe sostoyanie pigmentnogo epitaliya setchatki. Oftalmokhirurgiya. 1991; 2: 57-58.
Monoylo TV, Gubrik ZV, Deynichenko II. Opticheskaya plotnost makulyarnogo pigmenta v zdorovoi populyatsii. Problemy, dostizheniya i perspektivy razvitiya medico-biologicheskikh nauk. 2010; 146: 206.
Pasechnikova NV. Lazernoe sechenie pri patologii glaznogo dna. Kyiv: Naukova dumka; 2007. 206 p.
Soldatova AM. Rol svobodnoradikalnykh, okislitelno-vosstanovitelnykh protsessov i vidimogo sveta v patogeneze skleroticheskoi makulodistrofii i ee differentsirovannoe lechenie. Extended abstract of Master’s thesis. Odessa; 1992. 36 p.
Age-Related Eye Disease Study Research Group. A randomized placebo-controlled clinical trial of high-dose supplementation with vitamins C and E, beta-carotene and zinc for age-related macular degeneration and vision loss. Arch Ophthalmol. 2001; 119: 1417-1436. http://dx.doi.org/10.1001/archopht.119.10.1417
Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-relatrd macular degeneration: the Age-Related Eye Disease Study 2 (AREDS 2) randomizedclinical trial. JAMA. 2013; 309(19): 2005-2015. http://dx.doi.org/10.1001/jama.2013.4997
Armstrong GA, Hearst JE. Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J. 1996; 10(2): 228-237.
Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME, et al. Macular pigment and risk for age-related macular degeneration in subjecrsfrom a Northen European population. Invest Ophthalmol Vis Sci. 2001; 42: 439-446.
Berendscot TT, Willemse-Assink JJ, Bastiaance M, de Jong PT, van Norren D. Macular pigment and melanin in age-related maculopathy in a general population. Invest Ophthalmol Vis Sci. 2002; 43: 1928-1932.
Bernstein PS, Zhao D-Y, Wintch SW, Ermakov IV, McClane RW, Gellermann W. Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology. 2002 Oct;109(10):1780–1787. http://dx.doi.org/10.1016/S0161-6420(02)01173-9
Delcourt C, Carrie`re I, Delage M, Barberger-Gateau P, Schalch W. Plasma Lutein and Zeaxanthin and Other Carotenoids as Modifiable Risk Factors for Age-Related Maculopathy and Cataract: The POLA Study. Investig Opthalmology Vis Sci. 2006 Jun 1;47(6):2329. http://dx.doi.org/10.1167/iovs.05-1235
Delcourt C. Light Exposure and the Risk of Age-Related Macular Degeneration. Arch Ophthalmol. 2001 Oct 1;119(10):1463. http://dx.doi.org/10.1001/archopht.119.10.1463
Dennison J, Beatty S, Regan GO, Nolan J. Impact of macular pigment on visual performance. Actual optometry. 2013; 2: 28-33.
Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004 Mar;137(3):486–95. http://dx.doi.org/10.1016/j.ajo.2003.11.069
Loughman J, Davison PA, Nolan JM, Akkali MC, Beatty S. Macular pigment and its contribution to visual performance and experience. J Optom. 2010 Apr;3(2):74–90. http://dx.doi.org/10.1016/S1888-4296(10)70011-X
Moeller SM. Associations Between Intermediate Age-Related Macular Degeneration and Lutein and Zeaxanthin in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Arch Ophthalmol. 2006 Aug 1;124(8):1151. http://dx.doi.org/10.1001/archopht.124.8.1151
Neelam K, Hogg RE, Stevenson MR, Johnston E, Anderson R, Beatty S, et al. Carotenoids and Co-Antioxidants in Age-Related Maculopathy: Design and Methods. Ophthalmic Epidemiol. 2008 Jan 8;15(6):389–401. http://dx.doi.org/10.1080/09286580802154275
Nolan JM, Akkali MC, Loughman J, Howard AN, Beatty S. Macular carotenoid supplementation in subjects with atypical spatial profiles of macular pigment. Exp Eye Res. 2012 Aug;101:9–15. http://dx.doi.org/10.1016/j.exer.2012.05.006
Nolan JM, Loughman J, Akkali MC, Stack J, Scanlon G, Davison P, et al. The impact of macular pigment augmentation on visual performance in normal subjects: COMPASS. Vision Res. 2011 Mar;51(5):459–469. http://dx.doi.org/10.1016/j.visres.2010.12.016
Nolan JM, Stack J, O’Donovan O, Loane E, Beatty S. Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp Eye Res. 2007 Jan;84(1):61–74. http://dx.doi.org/10.1016/j.exer.2006.08.016
Sommerburg O, Siems WG, Hurst JS, Lewis JW, Kliger DS, van Kuijk FJGM. Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res. 1999 Jan 2;19(6):491–495. http://dx.doi.org/10.1076/ceyr.19.6.491.5276
Stringham JM, Hammond BR. The Glare Hypothesis of Macular Pigment Function. Optom Vis Sci. 2007 Sep;84(9):859–864. http://dx.doi.org/10.1097/OPX.0b013e3181559c2b
Trieschmann M, Beatty S, Nolan JM, Hense HW, Heimes B, Austermann U, et al. Changes in macular pigment optical density and serum concentrations of its constituent carotenoids following supplemental lutein and zeaxanthin: The LUNA study. Exp Eye Res. 2007 Apr;84(4):718–728. http://dx.doi.org/10.1016/j.exer.2006.12.010
Weigert G, Kaya S, Pemp B, Sacu S, Lasta M, Werkmeister RM, et al. Effects of Lutein Supplementation on Macular Pigment Optical Density and Visual Acuity in Patients with Age-Related Macular Degeneration. Investig Opthalmology Vis Sci. 2011 Oct 17;52(11):8174. http://dx.doi.org/10.1167/iovs.11-7522
Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Heal. 2014 Feb;2(2):e106–116. http://dx.doi.org/10.1016/S2214-109X(13)70145-1

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.