Blood Plasma Serotonin and von Willebrand Factor as Biomarkers of Unstable Angina Progression Toward Myocardial Infarction
PDF
XML
Full Text

Keywords

Unstable Angina
Myocardial Infarction
Serotonin
Factor von Willebrand

How to Cite

Tyravska, Y., Savchenko, O., Lizogub, V., Raksha, N., & Savchuk, O. (2021). Blood Plasma Serotonin and von Willebrand Factor as Biomarkers of Unstable Angina Progression Toward Myocardial Infarction. Galician Medical Journal, 28(1), E202112. https://doi.org/10.21802/gmj.2021.1.2

Abstract

Aim: To investigate the serotonin and von Willebrand factor (vWF) concentrations among unstable angina (UA) patients without and with progression toward myocardial infarction (outcome) and to assess the utility of both as prognostic markers of UA complications.

Materials and methods: In observational cohort study, we recruited 103 patients with ischemic heart disease (the median age 65.0 (59.0-69.0) years, 45 females (43.7%)). After full set of investigations including high sensitive Troponin I test and 28-day follow-up period, we defined three groups: Group 1 - stable angina patients (n=22) as control, Group 2 - UA patients without outcome (n=71), Group 3 - UA patients with outcome (n=10). We analyzed the blood plasma serotonin content by the ion-exchange chromatography with measurement of serotonin on fluorescence spectrophotometer. VWF concentration was determined by ELISA. We compared the concentrations of observed parameters among the groups with the Kruskal-Wallis test (with post-hoc Mann-Whitney test with Bonferroni-Holm correction). We assessed binary logistic models, receiver operating characteristic curves, calculated sensitivity (Se), specificity (Sp), and positive likelihood ratio (LR+) for each indicator.

Results: We registered elevation in serotonin concentration and decline in vWF concentration in Group 3 in comparison with Group 2 (22.670 (20.687-24.927) μg/ml vs 11.980 (8.120-15.000) μg/ml, p< 0.001, and 0.117 (0.109-0.120) rel.units/ml vs 0.134 (0.127-0.143) rel.units/ml, p < 0.001) and Group 1 (12.340 (10.052-13.619) μg/ml, p < 0.001, and 0.137 (0.127-0.156) rel.units/ml, p < 0.001), respectively. No significant differences in serotonin and vWF concentrations between Group 1 and Group 2 were detected (p=0.81 and p=0.36, respectively). The probability of outcome increased significantly (by 60.7% and 59.7%, LR+ 19.0 [6.0, 60.0] and 18.0 [3.9, 80.0]) if serotonin concentration was above 21.575 μg/ml (Se=80.0%, Sp=95.8%, AUC=0.975) and vWF concentration was below 0.114 rel.units/ml (Se=50.0%, Sp=97.2%, AUC=0.973), respectively.

Conclusions: Serotonin and vWF as biomarkers are demonstrated promising results for rule-in the patients with risk of short-term UA progression toward myocardial infarction.

https://doi.org/10.21802/gmj.2021.1.2
PDF
XML
Full Text

References

World Health Organization. The top 10 causes of death [Internet]. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, et al. The Global Burden of Ischemic Heart Disease in 1990 and 2010. Circulation [Internet]. 2014 Apr 8;129(14):1493–1501. Available from: https://doi.org/10.1161/CIRCULATIONAHA.113.004046

Dugani SB, Moran AE, Bonow RO, Gaziano TA. Ischemic Heart Disease: Cost-Effective Acute Management and Secondary Prevention. Disease Control Priorities, Third Edition (Volume 5): Cardiovascular, Respiratory, and Related Disorders [Internet]. 2017 Nov 17;135–155. Available from: https://doi.org/10.1596/978-1-4648-0518-9_ch8

Alabas OA, Jernberg T, Pujades-Rodriguez M, Rutherford MJ, West RM, Hall M, et al. Statistics on mortality following acute myocardial infarction in 842 897 Europeans. Cardiovascular Research [Internet]. 2019 Jul 26;116(1):149–157. Available from: https://doi.org/10.1093/cvr/cvz197

Puelacher C, Gugala M, Adamson PD, Shah A, Chapman AR, Anand A, et al. Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart [Internet]. 2019 Apr 24;105(18):1423–1431. Available from: https://doi.org/10.1136/heartjnl-2018-314305

Collet J-P, Thiele H, Barbato E, Barthélémy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. European Heart Journal [Internet]. 2020 Aug 29;ehaa575. Available from: https://doi.org/10.1093/eurheartj/ehaa575

Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathology International [Internet]. 2020 Mar 13;70(6):309–322. Available from: https://doi.org/10.1111/pin.12921

Crea F, Libby P. Acute Coronary Syndromes. Circulation [Internet]. 2017 Sep 19;136(12):1155–1166. Available from: https://doi.org/10.1161/CIRCULATIONAHA.117.029870

Kanaji S, Fahs SA, Shi Q, Haberichter SL, Montgomery RR. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. Journal of Thrombosis and Haemostasis [Internet]. 2012 Aug;10(8):1646–1652. Available from: https://doi.org/10.1111/j.1538-7836.2012.04797.x

Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal [Internet]. 2019 Aug 31;41(3):407–477. Available from: https://doi.org/10.1093/eurheartj/ehz425

Maksimenko E, Savchenko V. The level of tryptophan and serotonin in the convulsive readiness conditions of cerebrum. Journal KhNU. 2000;(1):44-47. Available from: https://periodicals.karazin.ua/medicine/article/view/7454

Udenfriend S, Weissbach H, Clark CT. The estimation of 5-hydroxytryptamine (serotonin) in biological tissues. Journal of Biological Chemistry [Internet]. 1955 Jul;215(1):337–344. Available from: https://doi.org/10.1016/S0021-9258(18)66041-7

Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. Journal of the American Society of Echocardiography [Internet]. 2019 Jan;32(1):1–64. Available from: https://doi.org/10.1016/j.echo.2018.06.004

Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. BMJ [Internet]. 2004 Jul 15;329(7458):168–169. Available from: https://doi.org/10.1136/bmj.329.7458.168

Xu W, Wang L, Zhang R, Sun X, Huang L, Su H, et al. Diagnosis and prognosis of myocardial infarction on a plasmonic chip. Nature Communications [Internet]. 2020 Apr 3;11(1). Available from: https://doi.org/10.1038/s41467-020-15487-3

Zeitouni M, Clare RM, Chiswell K, Abdulrahim J, Shah N, Pagidipati NP, et al. Risk Factor Burden and Long‐Term Prognosis of Patients With Premature Coronary Artery Disease. Journal of the American Heart Association [Internet]. 2020 Dec 15;9(24). Available from: https://doi.org/10.1161/JAHA.120.017712

Abdu FA, Mohammed A-Q, Liu L, Xu Y, Che W. Myocardial Infarction with Nonobstructive Coronary Arteries (MINOCA): A Review of the Current Position. Cardiology [Internet]. 2020;145(9):543–552. Available from: https://doi.org/10.1159/000509100

Yao J, Xie Y, Liu Y, Tang Y, Xu J. Prediction Factors of 6-Month Poor Prognosis in Acute Myocardial Infarction Patients. Frontiers in Cardiovascular Medicine [Internet]. 2020 Aug 13;7:130. Available from: https://doi.org/10.3389/fcvm.2020.00130

Stone PH, Maehara A, Coskun AU, Maynard CC, Zaromytidou M, Siasos G, et al. Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events. JACC: Cardiovascular Imaging [Internet]. 2018 Mar;11(3):462–471. Available from: https://doi.org/10.1016/j.jcmg.2017.01.031

Willerson JT, Yao SK, Ferguson JJ, Anderson~HV, Golino P, Buja LM. Unstable angina pectoris and the progression to acute myocardial infarction. Role of platelets and platelet-derived mediators. Tex. Heart I. J. 1991;18(4):243-247. Available from: https://pubmed.ncbi.nlm.nih.gov/15227406/

Chapman AR, Hesse K, Andrews J, Ken Lee K, Anand A, Shah ASV, et al. High-Sensitivity Cardiac Troponin I and Clinical Risk Scores in Patients With Suspected Acute Coronary Syndrome. Circulation [Internet]. 2018 Oct 16;138(16):1654–1665. Available from: https://doi.org/10.1161/CIRCULATIONAHA.118.036426

Eggers KM, Jernberg T, Lindahl B. Unstable Angina in the Era of Cardiac Troponin Assays with Improved Sensitivity—A Clinical Dilemma. The American Journal of Medicine [Internet]. 2017 Dec;130(12):1423–1430.e5. Available from: https://doi.org/10.1016/j.amjmed.2017.05.037

Giannitsis E, Biener M, Hund H, Mueller-Hennessen M, Vafaie M, Gandowitz J, et al. Management and outcomes of patients with unstable angina with undetectable, normal, or intermediate hsTnT levels. Clinical Research in Cardiology [Internet]. 2019 Jul 19;109(4):476–487. Available from: https://doi.org/10.1007/s00392-019-01529-4

Kurano M, Dohi T, Nojiri T, Kobayashi T, Hirowatari Y, Inoue A, et al. Blood levels of serotonin are specifically correlated with plasma lysophosphatidylserine among the glycero-lysophospholipids. BBA Clinical [Internet]. 2015 Dec;4:92–98. Available from: https://doi.org/10.1016/j.bbacli.2015.08.003

Rieder M, Laumann R, Witsch T, Schanze N, Heger L, Olivier CB, et al. Evaluation of Serum Serotonin as a Biomarker for Myocardial Infarction and Ischemia/Reperfusion Injury. Applied Sciences [Internet]. 2020 Sep 13;10(18):6379. Available from: https://doi.org/10.3390/app10186379

Sugiura T, Dohi Y, Yamashita S, Hirowatari Y, Fujii S, Ohte N. Serotonin in peripheral blood reflects oxidative stress and plays a crucial role in atherosclerosis: Novel insights toward holistic anti-atherothrombotic strategy. Atherosclerosis [Internet]. 2016 Mar;246:157–160. Available from: https://doi.org/10.1016/j.atherosclerosis.2016.01.015

Odaka Y, Takahashi J, Tsuburaya R, Nishimiya K, Hao K, Matsumoto Y, et al. Plasma concentration of serotonin is a novel biomarker for coronary microvascular dysfunction in patients with suspected angina and unobstructive coronary arteries. European Heart Journal [Internet]. 2017;38(7):489-496. Available from: https://doi.org/10.1093/eurheartj/ehw448

Fraer M, Kilic F. Serotonin. Hypertension [Internet]. 2015 May;65(5):942–948. Available from: https://doi.org/10.1161/HYPERTENSIONAHA.114.05061

Lancellotti S, Sacco M, Basso M, Cristofaro RD. Mechanochemistry of von Willebrand factor. Biomolecular Concepts [Internet]. 2019 Nov 27;10(1):194–208. Available from: https://doi.org/10.1515/bmc-2019-0022

Rubin R. Exploring the Relationship Between Depression and Dementia. JAMA [Internet]. 2018 Sep 11;320(10):961. Available from: https://doi.org/10.1001/jama.2018.11154

Conio B, Martino M, Magioncalda P, Escelsior A, Inglese M, Amore M, et al. Opposite effects of dopamine and serotonin on resting-state networks: review and implications for psychiatric disorders. Molecular Psychiatry [Internet]. 2019 Apr 5;25(1):82–93. Available from: https://doi.org/10.1038/s41380-019-0406-4

Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Frontiers in Neuroendocrinology [Internet]. 2019 Jul;54:100746. Available from: https://doi.org/10.1016/j.yfrne.2019.04.003

Gałecki P, Talarowska M. Inflammatory theory of depression. Psychiatria Polska [Internet]. 2018 Jun 30;52(3):437–447. Available from: https://doi.org/10.12740/PP/76863

Fan M, Wang X, Peng X, Feng S, Zhao J, Liao L, et al. Prognostic value of plasma von Willebrand factor levels in major adverse cardiovascular events: a systematic review and meta-analysis. BMC Cardiovascular Disorders [Internet]. 2020 Feb 10;20(1). Available from: https://doi.org/10.1186/s12872-020-01375-7

Green D, Tian L, Greenland P, Liu K, Kibbe M, Tracy R, et al. Association of the von Willebrand Factor–ADAMTS13 Ratio With Incident Cardiovascular Events in Patients With Peripheral Arterial Disease. Clinical and Applied Thrombosis/Hemostasis [Internet]. 2016 Jun 17;23(7):807–813. Available from: https://doi.org/10.1177/1076029616655615

Wang X, Zhao J, Zhang Y, Xue X, Yin J, Liao L, et al. Kinetics of plasma von Willebrand factor in acute myocardial infarction patients: a meta-analysis. Oncotarget [Internet]. 2017 Aug 9;8(52):90371–90379. Available from: https://doi.org/10.18632/oncotarget.20091

Okhota S, Melnikov I, Avtaeva Y, Kozlov S, Gabbasov Z. Shear Stress-Induced Activation of von Willebrand Factor and Cardiovascular Pathology. International Journal of Molecular Sciences [Internet]. 2020 Oct 21;21(20):7804. Available from: https://doi.org/10.3390/ijms21207804

Zhang C, Kelkar A, Neelamegham S. von Willebrand factor self-association is regulated by the shear-dependent unfolding of the A2 domain. Blood Advances [Internet]. 2019 Apr 1;3(7):957–968. Available from: https://doi.org/10.1182/bloodadvances.2018030122

Oran I, Cinar C, Bozkaya H, Parildar M, Duman S. Reduced Activity of von Willebrand Factor after Flow-Diverting Stent Implantation for Intracranial Aneurysms: A Link to Acquired von Willebrand Disease? American Journal of Neuroradiology [Internet]. 2020 Jan;41(1):140–146. Available from: https://doi.org/10.3174/ajnr.A6343

Lancellotti S, Sacco M, Basso M, Cristofaro RD. Mechanochemistry of von Willebrand factor. Biomolecular Concepts [Internet]. 2019 Nov 27;10(1):194–208. Available from: https://doi.org/10.1515/bmc-2019-0022

Ziu E, Mercado CP, Li Y, Singh P, Ahmed BA, Freyaldenhoven S, et al. Down-regulation of the serotonin transporter in hyperreactive platelets counteracts the pro-thrombotic effect of serotonin. Journal of Molecular and Cellular Cardiology [Internet]. 2012 May;52(5):1112–1121. Available from: https://doi.org/10.1016/j.yjmcc.2012.02.004

Sanner JE, Frazier L. The Role of Serotonin in Depression and Clotting in the Coronary Artery Disease Population. Journal of Cardiovascular Nursing [Internet]. 2011 Sep;26(5):423–429. Available from: https://doi.org/10.1097/JCN.0b013e3182076a81

Montalescot G, Collet JP, Choussat R, Ankri A, Thomas D. A rise of troponin and/or von Willebrand factor over the first 48 h is associated with a poorer 1-year outcome in unstable angina patients. International Journal of Cardiology [Internet]. 2000 Feb;72(3):293–294. Available from: https://doi.org/10.1016/S0167-5273(99)00202-8

Kaikita K, Soejima K, Matsukawa M, Nakagaki T, Ogawa H. Reduced von Willebrand factor-cleaving protease (ADAMTS13) activity in acute myocardial infarction. Journal of Thrombosis and Haemostasis [Internet]. 2006 Nov;4(11):2490–2493. Available from: https://doi.org/10.1111/j.1538-7836.2006.02161.x

Chion CKNK, Doggen CJM, Crawley JTB, Lane DA, Rosendaal FR. ADAMTS13 and von Willebrand factor and the risk of myocardial infarction in men. Blood [Internet]. 2006 Oct 19;109(5):1998–2000. Available from: https://doi.org/10.1182/blood-2006-07-038166

Konijnenberg LSF, Damman P, Duncker DJ, Kloner RA, Nijveldt R, van Geuns R-JM, et al. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovascular Research [Internet]. 2019 Nov 9;116(4):787–805. Available from: https://doi.org/10.1093/cvr/cvz301

Van der Vorm L, Huskens D, Kicken C, Remijn J, Roest M, de Laat B, et al. Effects of Repeated Bouts of Exercise on the Hemostatic System. Seminars in Thrombosis and Hemostasis [Internet]. 2018 Oct 5;44(08):710–722. Available from: https://doi.org/10.1055/s-0038-1673619

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.