Renin-Angiotensin System: A Review of Historical Perspectives
PDF
XML
Full Text

Keywords

Renin-Angiotensin System
Angiotensin-Converting Enzyme 2
Angiotensin-(1–7)
Mas Receptor

How to Cite

Kovalyova, O., Zhuravlyova, A., & Ivanchenko, S. (2023). Renin-Angiotensin System: A Review of Historical Perspectives. Galician Medical Journal, 30(2), E202327. https://doi.org/10.21802/gmj.2023.2.7

Abstract

The article is a review of publications concerning historical perspectives of the renin-angiotensin system. The discovery of its components is presented in chronological order, beginning with the initial identification of renin and proceeding to the subsequent discoveries of angiotensin-converting enzyme 2, angiotensin- (1-7), Mas receptor.

This paper presents a modern classification of the renin-angiotensin system, dividing it into classical and non-classical branches, based on the determination of the biological effects of its components. Significant attention is devoted to elucidating the biochemical cascade of the renin-angiotensin system, its physiological transformations, and its implications in human body processes. The detrimental cardiac effects of the classical renin-angiotensin system are highlighted, along with the crucial role played by its alternative axis in counteracting the development of cardiovascular diseases.

The article presents data on the involvement of angiotensin-converting enzyme 2 and its receptors in coronavirus infections, susceptibility to infection, and disease progression.

https://doi.org/10.21802/gmj.2023.2.7
PDF
XML
Full Text

References

Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. Journal of Clinical Investigation. 1990;86(6):1913–1920. Available from: https://doi.org/10.1172/JCI114924

Bonnardeaux A, Davies E, Jeunemaitre X, Féry I, Charru A, Clauser E, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension. 1994;24(1):63–69. Available from: https://doi.org/10.1161/01.HYP.24.1.63

Berge KE, Bakken A, Bøhn M, Erikssen J, Berg K. A DNA polymorphism at the angiotensin II type 1 receptor (AT1R) locus and myocardial infarction. Clinical Genetics. 2008;52(2):71–76. Available from: https://doi.org/10.1111/j.1399-0004.1997.tb02521.x

Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research. 2000;87(5):e1–e9. Available from: https://doi.org/10.1161/01.RES.87.5.e1

Yang HYT, Erdös EG, Chiang TS. New enzymatic route for the inactivation of angiotensin. Nature. 1968;218(5148):1224–1226. Available from: https://doi.org/10.1038/2181224a0

Young D, Waitches G, Birchmeier C, Fasano O, Wigler M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell. 1986;45(5):711–719. Available from: https://doi.org/10.1016/0092-8674(86)90785-3

Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine. 2020;46(4):586–590. Available from: https://doi.org/10.1007/s00134-020-05985-9

Tigerstedt R, Bergman PQ. Niere und Kreislauf1. Skandinavisches Archiv Für Physiologie. 1898;8(1):223–271. Available from: https://doi.org/10.1111/j.1748-1716.1898.tb00272.x

Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension. Journal of Experimental Medicine. 1934;59(3):347–379. Available from: https://doi.org/10.1084/jem.59.3.347

Braun-Menendez E, Fasciolo JC, Leloir LF, Muñoz JM. The substance causing renal hypertension. The Journal of Physiology. 1940;98(3):283–298. Available from: https://doi.org/10.1113/jphysiol.1940.sp003850

Page IH, Helmer OM. Angiotonin-activator, renin- and angiotonin-inhibitor, and the mechanism of angiotonin tachyphylaxis in normal, hypertensive, and nephrectomized animals. Journal of Experimental Medicine. 1940;71(4):495–519. Available from: https://doi.org/10.1084/jem.71.4.495

Skeggs LT, Marsh WH, Kahn JR, Shumway NP. The existence of two forms of hypertensin. Journal of Experimental Medicine. 1954;99(3):275–282. Available from: https://doi.org/10.1084/jem.99.3.275

Skeggs LT, Kahn JR, Shumway NP. The preparation and function of the hypertensin-converting enzyme. Journal of Experimental Medicine. 1956;103(3):295–299. Available from: https://doi.org/10.1084/jem.103.3.295

Soubrier F, Alhenc-Gelas F, Hubert C, Allegrini J, John M, Tregear G, et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proceedings of the National Academy of Sciences. 1988;85(24):9386–9390. Available from: https://doi.org/10.1073/pnas.85.24.9386

Fei DT, Coghlan JP, Fernley RT, Scoggins BA, Tregear G. Peripheral production of angiotensin II and III in sheep. Circulation Research. 1980;46:135–137. Available from: https://pubmed.ncbi.nlm.nih.gov/7379257/

Chiu AT, Ryan JW, Stewart JM, Dorer FE. Formation of angiotensin III by angiotensin-converting enzyme. Biochemical Journal. 1976;155(1):189–192. Available from: https://doi.org/10.1042/bj1550189

Kotlo K, Hughes DE, Herrera VLM, Ruiz-Opazo N, Costa RH, Robey RB, et al. Functional polymorphism of the Anpep gene increases promoter activity in the Dahl Salt-resistant rat. Hypertension. 2007;49(3):467–472. Available from: https://doi.org/10.1161/01.HYP.0000256303.40359.38

Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, et al. Identification of angiotensin II receptor subtypes. Biochemical and Biophysical Research Communications. 1989;165(1):196–203. Available from: https://doi.org/10.1016/0006-291X(89)91054-1

Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, et al. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 1991;351(6323):230–233. Available from: https://doi.org/10.1038/351230a0

Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991;351(6323):233–236. Available from: https://doi.org/10.1038/351233a0

Greene LJ, Spadaro AC, Martins AR, Perussi De Jesus WD, Camargo AC. Brain endo-oligopeptidase B: a post-proline cleaving enzyme that inactivates angiotensin I and II. Hypertension. 1982;4(2):178–184. Available from: https://doi.org/10.1161/01.HYP.4.2.178

Block CH, Santos RAS, Brosnihan KB, Ferrario CM. Immunocytochemical localization of angiotensin-(1–7) in the rat forebrain. Peptides. 1988;9(6):1395–1401. Available from: https://doi.org/10.1016/0196-9781(88)90208-2

Santos RA, Brosnihan KB, Chappell MC, Pesquero J, Chernicky CL, Greene LJ, et al. Converting enzyme activity and angiotensin metabolism in the dog brainstem. Hypertension. 1988;11(2_pt_2):153–157. Available from: https://doi.org/10.1161/01.HYP.11.2_Pt_2.I153

Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Journal of Biological Chemistry. 2000;275(43):33238–33243. Available from: https://doi.org/10.1074/jbc.M002615200

Ferrario CM, Iyer SN. Angiotensin-(1–7): a bioactive fragment of the renin–angiotensin system. Regulatory Peptides. 1998;78(1–3):13–18. Available from: https://doi.org/10.1016/S0167-0115(98)00134-7

Grobe N, Weir NM, Leiva O, Ong FS, Bernstein KE, Schmaier AH, et al. Identification of prolyl carboxypeptidase as an alternative enzyme for processing of renal angiotensin II using mass spectrometry. American Journal of Physiology-Cell Physiology. 2013;304(10):C945–C953. Available from: https://doi.org/10.1152/ajpcell.00346.2012

Chappell MC. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor axis. Hypertension. 2007;50(4):596–699. Available from: https://doi.org/10.1161/HYPERTENSIONAHA.106.076216

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. Available from: https://doi.org/10.1038/nature02145

Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281-292.e6. Available from: https://doi.org/10.1016/j.cell.2020.02.058

Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clinical Science. 2020;134(5):543–545. Available from: https://doi.org/10.1042/CS20200163

Nikolaeva S, Pradervand S, Centeno G, Zavadova V, Tokonami N, Maillard M, et al. The circadian clock modulates renal sodium handling. Journal of the American Society of Nephrology. 2012;23(6):1019–1026. Available from: https://doi.org/10.1681/ASN.2011080842

Hsueh WA. Potential effects of renin activation on the regulation of renin production. American Journal of Physiology-Renal Physiology. 1984;247(2):F205–F212. Available from: https://doi.org/10.1152/ajprenal.1984.247.2.F205

Kurt B, Gerl K, Karger C, Schwarzensteiner I, Kurtz A. Chronic hypoxia-inducible transcription factor-2 activation stably transforms juxtaglomerular renin cells into fibroblast-like cells In vivo. Journal of the American Society of Nephrology. 2015;26(3):587–596. Available from: https://doi.org/10.1681/ASN.2013111152

Voors AA, Pinto YM, Buikema H, Urata H, Oosterga M, Rooks G, et al. Dual pathway for angiotensin II formation in human internal mammary arteries. British Journal of Pharmacology. 1998;125(5):1028–1032. Available from: https://doi.org/10.1038/sj.bjp.0702150

Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacological reviews. 2000;52:11–34. Available from: https://pharmrev.aspetjournals.org/content/52/1/11.long

Balt JC, Mathy M-J, Nap A, Pfaffendorf M, van Zwieten PA. Effect of the AT1-receptor antagonists losartan, irbesartan, and telmisartan on angiotensin II-induced facilitation of sympathetic neurotransmission in the rat mesenteric artery. Journal of Cardiovascular Pharmacology. 2001;38(1):141–148. Available from: https://doi.org/10.1097/00005344-200107000-00015

Mulrow PJ, Ganong WR. Stimulation of aldosterone secretion by angiotensin II. The Yale Journal of Biology and Medicine. 1961; 33:386–395. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2604161/

Gray M. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts. Cardiovascular Research. 1998;40(2):352–363. Available from: https://doi.org/10.1016/S0008-6363(98)00121-7

Griendling KK, Ushio-Fukai M, Lassègue B, Alexander RW. Angiotensin II signaling in vascular smooth muscle. Hypertension. 1997;29(1):366–370. Available from: https://doi.org/10.1161/01.HYP.29.1.366

Matsubara H, Kanasaki M, Murasawa S, Tsukaguchi Y, Nio Y, Inada M. Differential gene expression and regulation of angiotensin II receptor subtypes in rat cardiac fibroblasts and cardiomyocytes in culture. Journal of Clinical Investigation. 1994;93(4):1592–1601. Available from: https://doi.org/10.1172/JCI117139

Allen AM, Zhuo J, Mendelsohn FA. Localization of angiotensin AT1 and AT2 receptors. Journal of the American Society of Nephrology. 1999;10(Suppl 11):S23–S29. Available from: https://pubmed.ncbi.nlm.nih.gov/9892137/

Ito M, Oliverio MI, Mannon PJ, Best CF, Maeda N, Smithies O, et al. Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proceedings of the National Academy of Sciences. 1995;92(8):3521–3525. Available from: https://doi.org/10.1073/pnas.92.8.3521

Campbell WB, Brooks SN, Pettinger WA. Angiotensin II- and angiotensin III-induced aldosterone release in vivo in the rat. Science. 1974;184(4140):994–996. Available from: https://doi.org/10.1126/science.184.4140.994

Kranzhöfer R, Schmidt J, Pfeiffer CAH, Hagl S, Libby P, Kübler W. Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19(7):1623–1629. Available from: https://doi.org/10.1161/01.ATV.19.7.1623

Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. Journal of Clinical Investigation. 1996;97(8):1916–1923. Available from: https://doi.org/10.1172/JCI118623

Suzuki J, Matsubara H, Urakami M, Inada M. Rat angiotensin II (type 1A) receptor mRNA regulation and subtype expression in myocardial growth and hypertrophy. Circulation Research. 1993;73(3):439–447. Available from: https://doi.org/10.1161/01.RES.73.3.439

Simko F, Pechanova O. Remodelling of the heart and vessels in experimental hypertension: advances in protection. Journal of Hypertension. 2010;28(Suppl 1):S1–S6. Available from: https://doi.org/10.1097/01.hjh.0000388487.43460.db

Kaschina E, Unger T. Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Pressure. 2003;12(2):70–88. Available from: https://doi.org/10.1080/08037050310001057

Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. Journal of Clinical Investigation. 1995;95(2):651–657. Available from: https://doi.org/10.1172/JCI117710

Näveri L, Strömberg C, Saavedra JM. Angiotensin II AT2 receptor stimulation increases cerebrovascular resistance during hemorrhagic hypotension in rats. Regulatory Peptides. 1994;52(1):21–29. Available from: https://doi.org/10.1016/0167-0115(94)90017-5

Zhuo J, Dean R, MacGregor D, Alcorn D, Mendelsohn FA. Presence of angiotensin II AT2 receptor binding sites in the adventitia of human kidney vasculature. Clinical and Experimental Pharmacology and Physiology. 1996;23(S3):147–154. Available from: https://doi.org/10.1111/j.1440-1681.1996.tb03077.x

Siragy HM, Carey RM. Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension. 1999;33(5):1237–1242. Available from: https://doi.org/10.1161/01.HYP.33.5.1237

Sosa-Canache B, Cierco M, Gutierrez CI, Israel A. Role of bradykinins and nitric oxide in the AT2 receptor-mediated hypotension. Journal of Human Hypertension. 2000;14(S1):S40–S46. Available from: https://doi.org/10.1038/sj.jhh.1000986

Nakajima M, Hutchinson HG, Fujinaga M, Hayashida W, Morishita R, Zhang L, et al. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proceedings of the National Academy of Sciences. 1995;92(23):10663–10667. Available from: https://doi.org/10.1073/pnas.92.23.10663

Nouet S, Nahmias C. Signal transduction from the angiotensin II AT2 receptor. Trends in Endocrinology & Metabolism. 2000;11(1):1–6. Available from: https://doi.org/10.1016/S1043-2760(99)00205-2

Lo M, Liu KL, Lantelme P, Sassard J. Subtype 2 of angiotensin II receptors controls pressure-natriuresis in rats. Journal of Clinical Investigation. 1995;95(3):1394–1397. Available from: https://doi.org/10.1172/JCI117792

Stock P, Liefeldt L, Paul M, Ganten D. Local renin-angiotensin systems in cardiovascular tissues: localization and functional role. Cardiology. 1995;86(1):2–8. Available from: https://doi.org/10.1159/000176938

Lely A, Hamming I, van Goor H, Navis G. Renal ACE2 expression in human kidney disease. The Journal of Pathology. 2004;204(5):587–593. Available from: https://doi.org/10.1002/path.1670

Harmer D, Gilbert M, Borman R, Clark KL. ACE2 mRNA expression profiling in cardio-renal and gastrointestinal tissues using Northern blotting. Journal of Histochemistry and Cytochemistry. 2007;55(3):219–227.

Hamming I, Timens W, Bulthuis M, Lely A, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology. 2004;203(2):631–637. Available from: https://doi.org/10.1002/path.1570

Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828. Available from: https://doi.org/10.1038/nature00786

Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, et al. Prevention of angiotensin II–Mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57(2):314–322. Available from: https://doi.org/10.1161/HYPERTENSIONAHA.110.164244

Benter IF, Ferrario CM, Morris M, Diz DI. Antihypertensive actions of angiotensin-(1-7) in spontaneously hypertensive rats. American Journal of Physiology-Heart and Circulatory Physiology. 1995;269(1):H313–H319. Available from: https://doi.org/10.1152/ajpheart.1995.269.1.H313

Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1-7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27(3):523–528. Available from: https://doi.org/10.1161/01.HYP.27.3.523

Handa RK, Ferrario CM, Strandhoy JW. Renal actions of angiotensin-(1-7): in vivo and in vitro studies. American Journal of Physiology-Renal Physiology. 1996;270(1):F141–F147. Available from: https://doi.org/10.1152/ajprenal.1996.270.1.F141

Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the Mas receptor. American Journal of Physiology-Heart and Circulatory Physiology. 2005;289(4):H1560–H1566. Available from: https://doi.org/10.1152/ajpheart.00941.2004

Erdös EG, Skidgel RA. Neutral endopeptidase 24.11 (enkephalinase) and related regulators of peptide hormones 1. The FASEB Journal. 1989;3(2):145–151. Available from: https://doi.org/10.1096/fasebj.3.2.2521610

Rice GI, Thomas DA, Grant PJ, Turner AJ, Hooper NM. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochemical Journal. 2004;383(1):45–51. Available from: https://doi.org/10.1042/BJ20040634

Richards AM, Wittert GA, Espiner EA, Yandle TG, Ikram H, Frampton C. Effect of inhibition of endopeptidase 24.11 on responses to angiotensin II in human volunteers. Circulation Research. 1992;71(6):1501–1507. Available from: https://doi.org/10.1161/01.RES.71.6.1501

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. 2020;382(8):727–733. Available from: https://doi.org/10.1056/NEJMoa2001017

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8. Available from: https://doi.org/10.1016/j.cell.2020.02.052

Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine. 2005;11(8):875–879. Available from: https://doi.org/10.1038/nm1267

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. Available from: https://doi.org/10.1126/science.abb2507

Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench MO, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. Journal of Virology. 2010;84(2):1198–1205. Available from: https://doi.org/10.1128/JVI.01248-09

Osman IO, Melenotte C, Brouqui P, Million M, Lagier J-C, Parola P, et al. Expression of ACE2, soluble ACE2, angiotensin i, angiotensin ii and angiotensin-(1-7) is modulated in COVID-19 patients. Frontiers in Immunology. 2021;12:625732. Available from: https://doi.org/10.3389/fimmu.2021.625732

Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–116. Available from: https://doi.org/10.1038/nature03712

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA. 2020;323(13):1239–1242. Available from: https://doi.org/10.1001/jama.2020.2648

Clark CE, McDonagh STJ, McManus RJ, Martin U. COVID-19 and hypertension: risks and management. A scientific statement on behalf of the British and Irish Hypertension Society. Journal of Human Hypertension. 2021;35(4):304–307. Available from: https://doi.org/10.1038/s41371-020-00451-x

Holman N, Knighton P, Kar P, O’Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. The Lancet Diabetes & Endocrinology. 2020;8(10):823–833. Available from: https://doi.org/10.1016/S2213-8587(20)30271-0

Kass DA, Duggal P, Cingolani O. Obesity could shift severe COVID-19 disease to younger ages. The Lancet. 2020;395(10236):1544–1545. Available from: https://doi.org/10.1016/S0140-6736(20)31024-2

Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension. 2012;60(6):1524–1530. Available from: https://doi.org/10.1161/HYPERTENSIONAHA.112.192690

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.